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Abstract

Uniformly and rectilinearly moving charges and other sources with zero eigenfrequency do 
not radiate in vacuo. In the case of motion in a medium, however, the absence of radiation is 
rather the exception. Radiation is absent if in a non-moving, homogeneous and time-indepen­
dent medium a charge moves uniformly at a velocity v, smaller than the phase velocity cph 
for all waves that can propagate in this medium. If v > cph, the Vavilov-Cherenkov radiation 
may occur. However, radiation is also possible for v < cph. This is a transition radiation; it 
occurs if a source with a zero eigenfrequency moves at constant velocity in an inhomogeneous 
and (or) nonstationary medium (or near such a medium). The simplest form of transition 
radiation occurs when a charge crosses the boundary between two media. If the properties of 
a medium change periodically, the transition radiation is somewhat specific (resonance 
transition radiation or transition scattering). In particular, transition scattering occurs when a 
permittivity wave falls on a non-moving charge. Transition scattering is closely connected 
with transition bremsstrahlung radiation. Transition processes are essential for plasma 
physics.

We also touch upon the quantum interpretation of the Vavilov-Cherenkov effect and the 
classical and the quantum theory of the Doppler effect in a medium. The Vavilov-Cherenkov 
effect, transition radiation and transition scattering have analogies beyond the limits of 
electrodynamics to be described below.
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1. Introduction

There exists a rather large section of electrodynamics—and, in particular, 
optics—which deals with the radiation of uniformly and rectilinearly moving 
sources and, first of all, charges. The effects to be discussed below have analogies 
beyond the limits of electrodynamics (acoustics, chromodynamics and, properly 
speaking, any field theory).

We shall deal with the radiation of a source moving uniformly in (or near) a 
medium. Most important are sources with zero eigenfrequency, i.e. static in the 
reference frame where they are at rest. The sources may be charges, various 
permanent dipoles, etc. The corresponding radiation is the Vavilov-Cherenkov * 
radiation or transition radiation in its different forms. If a source has a non-zero 
eigenfrequency and moves uniformly and rectilinearly, we can observe the Doppler 
effect. For motion in vacuo the Doppler effect is well-known, but in a medium it 
may be more complicated (in textbooks this case is usually not considered).

* In the Western literature this effect is called the Cherenkov radiation. We (my colleagues, acquainted 
with the history of the question, and the author; see [6]) believe, however, that only the term 
“Vavilov-Cherenkov effect” is correct.

We have chosen the radiation of uniformly moving charges as the subject of the 
present chapter for three reasons. First, the corresponding class of problems seems 
to be rather interesting both from the general physical point of view and for the 
analysis of a number of concrete effects and their application. Second, I have been 
engaged in the study of these problems from the very beginning of my scientific 
activities. Third, there exists a fairly close connection with the studies of Niels Bohr 
who published his famous papers [1,2] devoted to the motion of charged particles 
through matter, in 1913 and 1915.

A consistent application of electrodynamics of continuous media to the motion 
of fast charged particles through matter is presented in a book by Landau and 
Lifshitz [10, ch. 14] (note, however, that for different dipoles and higher multipoles 
the situation is more complicated than for charges; this question is considered 
below, in section 5). For charges the role of the medium is essential only for far 
collisions with an impact parameter p » a, where for a condensed medium a ~ 3 X 
IO-10 m is the atomic dimension and for a plasma a ~ A-1/3 is the mean distance 
between particles. Under such conditions, say, a radiation of waves with a wave­
length À » a can be considered on the basis of the equations of electrodynamics of 
continuous media. Assuming for simplicity the medium to be isotropic and neglect­
ing spatial dispersion, we can take into account all the properties of the medium by 
introducing the dielectric constant e(w) and the magnetic permeability p(w).

So, we shall deal with a transparent medium with a refractive index n(w) 
= ycfco)p() and disregard absorption. In the case of transition radiation, how­
ever, we also consider an absorbing or nontransparent medium (for a nonabsorbing 
but nontransparent medium e and p are real quantities, but ep < 0). Here we only 
present the most important results and make some remarks. References may be 
found in some original papers [3-5,7,9] and books [8,11,12].
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2. Vavilov-Cherenkov effect for a charge

If a charge moves uniformly, not in vacuo, but in a medium, the absence of 
radiation is the exception rather than the rule. In fact, a charge emits no radiation 
only if its velocity v is less than the phase velocity cph for all of the electromagnetic 
waves which can propagate in a given medium. If v > cph, the Vavilov-Cherenkov 
radiation occurs. Moreover, even if v < cph the absence of radiation refers only to a 
medium at rest, which is everywhere uniform and, besides, time-independent. In a 
non-uniform and/or non-stationary medium a uniformly moving charge radiates 
also if v < cph: this is the transition radiation. It is interesting that even a charge at 
rest can radiate in a medium, although this is a rather exotic case (see section 8).

Sommerfeld considered in some detail the following problem: a charge (charged 
pellet) moves in vacuo at a velocity v = constant and we must find its electromag­
netic field. For v < c there is no radiation (a stationary problem is considered). For 
v > c there occurs radiation and its front forms a conic surface with an angle 0o 
between the normal to it (the wavevector k) and the velocity v. In this case (see fig. 
1):

£
cos = — . (1)V

One may say that condition (1) has a kinematic character—it is the condition for 
interference of secondary waves excited by the charge along its path. Rewritten in 
the form

cos 0O = , (2)

condition (1) holds for any kind of wave and for any static source; but it can be 
satisfied only if

y>cph- (3)

Fig. 1. Formation of Vavilov-Cherenkov radiation; (c/n)t is the light path for the time t, vt is the 
length passed by the particle during the same time.
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Sommerfeld had in a sense bad luck: within a year, we write 1905, the special theory 
of relativity appeared. According to this theory, the particle momentum is given by

mv

and it is impossible to accelerate it from small velocities to a velocity v> c. 
Moreover, it would seem that the causality requirements also do not allow particles 
to move with a velocity v> c, since they could be used as superluminal signals.

Nobody thought of the simple idea of transferring Sommerfeld’s results to the 
case of a charge moving through a medium. True, even before the appearance of 
Sommerfeld’s papers Heaviside [13] understood correctly the possible role of the 
medium. However, at that time his papers did not attract due attention. History 
took a different run. In 1934. S.I. Vavilov and P.A. Cherenkov observed radiation, 
the nature of which was explained in 1937 by Frank and Tamm [4] (for the history 
of the discovery see ref. [6]).

Vavilov-Cherenkov radiation is the radiation of a uniformly moving charge in a 
transparent medium with refractive index n(to) and, hence, with phase velocity 
cph = c/n(w). Conditions (2), (3) thus become

(4)

and

(5)

Frank and Tamm obtained for the energy emitted by a particle of charge e per unit 
time (that is, along a pathlength u) the following expression:

co dco
n(w) V

Li(co )[sin2 0O(^)] CO dw. (6)

Vavilov-Cherenkov radiation now occupies a prominent place in physics, and a 
huge number of papers is devoted to it, including books and review articles (see refs 
[8,11,12] and the literature cited therein). Not a smaller role is played by the Landau 
damping, i.e. the damping of longitudinal (plasma) waves in a collisionless plasma. 
Landau [14] concluded that such a damping should exist when, in 1946, he was 
working on the solution of the initial value problem concerning the propagation of 
longitudinal perturbations in a collisionless plasma, using the kinetic equation. The 
collisionless damping which then occurs and which also appears in a number of 
problems of plasma physics and plasmalike media (for instance, in the case of the 
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“solid-state plasma”—the electron liquid in metals), can be interpreted (if one 
considers it from a physical point of view) in different ways. One of them is the 
following: the condition for collisionless wave absorption by electrons in the 
plasma, which has the form:

w = kv, (7)

is simply the condition for emission (2) for waves (in this case the longitudinal 
plasma waves) with a phase velocity

where «Xw) is the refractive index for the longitudinal waves considered. The 
collisionless Landau absorption is thus closely connected with the inverse 
Vavilov-Cherenkov effect for plasma waves (if recoil is neglected, the kinematic 
conditions for absorption and for emission of waves are the same). When we are 
dealing with an “external” wave (in this case a longitudinal wave propagating in the 
plasma) we must consider its interaction not only with a single particle, but with an 
ensemble of them. As a result it is necessary to take into account not only the 
absorption of the waves, but also the stimulated emission.

Up to recently it seemed rather obvious that Vavilov-Cherenkov radiation would 
be impossible in vacuo and also in media with a refractive index n(te) < 1 (in 
particular, in an isotropic plasma under conditions where the well-known formula 
n(w) = V' — û)p/w2 is valid). In fact, however, such a conclusion is incorrect or too 
rash (see [8, ch. 8]). Quite realistic radiation sources can move at a velocity v > c 
(particle beams incident upon a metal plate), and there appears a possibility to 
observe the Vavilov-Cherenkov effect both in vacuo (under normal conditions, 
however, only if a boundary is present) and also in an isotropic plasma.

The Vavilov-Cherenkov effect is possible in vacuo also far from any boundaries 
if a strong constant magnetic field B exists which is comparable with the well-known 
critical value Bc = m2^/eh = 4.4 X 1013 Gauss (here e and m are the charge and the 
mass of the electron, respectively). As was noted already in the beginning of the 
1930s, vacuum in a strong field behaves like a bi-refringent medium. In some cases 
the refractive index for weak electromagnetic waves propagating in a strong mag­
netic field is nx > 1 and, hence, a uniformly moving charged particle can emit 
Vavilov-Cherenkov waves. Here we should not be confused by the fact that (unless 
we consider motion strictly in the direction of the strong magnetic field) a charged 
particle can be deflected by the magnetic field. The fact is that we can, in principle, 
maintain a constant velocity v of a particle by some external means (sources). 
Besides, one can formally assume the particle mass m to be arbitrarily large; its 
velocity will then be constant.

I wish to make yet one more methodical remark.
Frank and Tamm derived eq. (6) in 1937 by evaluating the electromagnetic 

energy flux S through a cylindrical surface surrounding the trajectory of the 
particle. The present author obtained the same formula in 1939 by evaluating the 
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change in energy dWeifm/dt of the electromagnetic field per unit time in the entire 
space (see [15] and [8, ch. 1]). Finally, the same result (see [9,10]) can be obtained by 
evaluating the work done by the field on the particle per unit time, i.e. the quantity 
evE, where the field E is calculated at the position of the charge (eE is the radiative 
friction force; the other parts of the field do not contribute to the corresponding 
expressions).

One would perhaps expect that all three methods would give identical results. 
Indeed, this is the case with the Vavilov-Cherenkov effect. But in the general case 
for non-stationary charges in vacuo (and in a medium) and, for example, for 
transition radiation, the quantities S, dW^^/dt and evE may be different (for 
details see refs [8,12]).

3. The quantum theory of the Vavilov-Cherenkov effect

Let us now turn to the quantum interpretation of the Vavilov-Cherenkov effect. In 
general, the Vavilov-Cherenkov effect is described in the framework of the classical 
theory and quantum corrections are not important. It seems to me, however, that 
from a methodical (and, if you like from a physical) point of view the quantum 
approach is useful and interesting.

Let us restrict ourselves to obtain condition (4) for emission and to its quantum 
generalization (of course, quantum theory enables us to derive eq. (6) with its 
quantum corrections [16]).

How can one explain, in quantum-mechanical language, the absence of emission 
by a charge or another static source moving uniformly in vacuo? To do this, it is 
sufficient to use the energy and momentum conservation laws:

Eq = EÁ + hV, Eo>1 = ]/m2c4 + c2PqA , (9)

pQ=px + hk, hk=^~, (10)

where Eo4 and p01 are the energy and the momentum of the charge (source) of rest 
mass m before (index 0) and after (index 1) the emission of a photon of energy /zco 
and momentum hk = {hcc/c\k/k} (co is the radiation frequency). One can verify 
that it is impossible (and this is also clear from eq. (13) with n = 1) to satisfy 
relations (9) and (10) for co > 0.

In order to consider radiation by a source in a medium, one must know the 
energy and the momentum of the radiation (the expression for the energy E 
— \jm2c4 + c2p2 of the source is, evidently, not changed). It is not that simple to do 
this fully consistently, but on an intuitive level the answer is clear at once. Indeed, 
the presence of the non-moving and time-independent medium does not affect the 
frequency co at all, and the wavelength in the medium À = À0/n(À), where Äo = 
27tc/co is the wavelength in vacuo; in other words, in the medium the wavenumber 
is

2tt w / Xk = = —n( co ).
A C
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Using this substitution, we get, instead of eq. (10),

(H)

A simultaneous solution of eqs. (9) and (11) leads to the result

hu —

(12)

2(mc/n)(p0 cos 0Q — c/n)
(13)

|/1 - v2/c2 (1 - 1/n2)

where 0O is the angle between v0 and k. If

(14)

[or for a somewhat more general inequality resulting from eq. (12)], which corre­
sponds to the classical limit, eq. (12) changes to eq. (4), as one expects. The classical 
limit corresponds to neglecting the recoil when a “photon in the medium” with 
momentum hk is emitted. It is also clear from eq. (13) that w > 0 and cos 0O < 1, i.e. 
emission is possible, only for v0 > c/n(<¿) [see eq. (5)]. In the classical limit, where 
the result [in this case expression (4)] does not contain Planck’s constant A, the 
quantum calculation has merely a methodical character: it may turn out to be 
convenient, but it is not unavoidable. The energy and momentum conservation laws 
can be formulated in the classical region by taking into account the connection 
between the emitted energy and the change in momentum G of the radiation 
and of the medium. In accordance with eq. (11) we get

Further, for a freely moving particle with sufficiently small changes in energy and 
momentum,

AE — EA - E0 = vAp = v(p} -poy, 

indeed, 
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furthermore one can put vQ~ vx~ v, and from the conservation laws (9) and (11), 
and replacing hco by we obtain

AE = Wetfm = vAp = ( kV j

The energies Wefm cancel out, and we are thus led to the classical condition for 
emission [see eq. (4)]

nv o i-----COS = 1
c

Relation (15), or k = hozn/c [see eq. (11)] corresponds to writing the energy­
momentum tensor in a medium in the Minkowskii form. In fact, however, the 
energy-momentum tensor of the field in a medium has the form proposed by 
Abraham (we mean the simplest case of a non-dispersive medium) which is reflected 
in the existence of the Abraham force upon the medium with a density

47TC

One can show that expression (15) is valid also when we use the Abraham tensor, 
if we are interested in the total momentum of both radiation and medium (for 
details see ref. [8], ch. 12; the connection with the phonon momentum in a solid 
body is also treated there). But it is just that quantity which occurs in the 
conservation law (11) or its classical analogue. The necessity to use expressions (11) 
and (15) for hk and G follows also from the classical eq. (4) for the angle of the 
Vavilov-Cherenkov radiation.

4. Vavilov-Cherenkov radiation in the case of motion in channels and 
gaps

Energy losses due to Vavilov-Cherenkov radiation make up a part of the total, 
so-called ionization losses. Vavilov-Cherenkov radiation in a transparent medium 
can go far from the source trajectory. The possibility to eliminate practically all 
other losses seems nonetheless very interesting. To this end a radiating particle must 
move in an empty channel or gap in a medium. In this case the losses due to near 
collisions are absent altogether, polarization losses are strongly suppressed (see also 
[17]), and the Vavilov-Cherenkov radiation on waves with wavelength À changes 
little if À » r, where r is the radius of the channel, or the width of the gap. This fact 
was mentioned by L.I. Mandelstam in 1940 (when he spoke at Cherenkov’s thesis 
defence). The transverse electromagnetic field of a charge in a direction perpendicu­
lar to the source trajectory is formed in a region on the order of Ä. If r » a, the
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influence of a channel or a gap can be accounted for by macroscopic equations with 
the usual boundary conditions. Such calculations [18] show, for example, that in a 
medium with « = 1.5 a charge with v -*  c in an empty channel, for which r/X ~ 0.1, 
radiates only by 10-20% weaker than it would in a continuous medium. Even in 
optics, not to mention longer waves, r/X — 0.1 for a channel of radius r ~ 5 X 10“6 
cm »a~3xl0~8 cm. The possibility to use a channel or a gap is of particular 
importance, not only for a moving charge, but also for an atom or another complex 
“system” (see section 6) which would be destroyed in a continuous medium. For 
suppressing ionization losses the trajectory of a charge or another radiator can 
simply be placed, instead of into a channel or a gap, in a vacuum outside the 
medium, but sufficiently close to it (in this case the Vavilov-Cherenkov radiation is 
small unless d/X 1, where d is the distance from the trajectory to the boundary 
between the medium and the vacuum).

The corresponding electrodynamic problems require rather cubersome calcu­
lations [18-20]. For methodical considerations it is instructive to note that in some 
cases it is useful to use the reciprocity theorem (see, for example, [10, section 89]). 
The application of this theorem makes it possible to establish that sufficiently thin 
channels or gaps do not influence the Vavilov-Cherenkov radiation caused by a 
charge [21] (see also [8, ch. 7]). By means of the same reciprocity theorem one finds 
that for dipoles and other multipoles even thin channels or gaps do, in general, 
affect the Vavilov-Cherenkov radiation. This problem is discussed in section 5.

The reciprocity theorem is also useful in solving other problems concerning 
radiators in a medium. For instance, let an oscillator (a dipole of frequency u>0) be 
placed in the centre of an empty spherical cavity of radius r «: Ào = Ittc/ccq in a 
medium with permittivity e(w). Then, on the basis of the known solution of the 
electrostatic problem concerning the field in a spherical cavity, the reciprocity 
theorem immediately suggests that the oscillator radiation field for the oscillator in 
a cavity differs by a factor of |c(w0)/(€(ia0) + 1) from the radiation field in the 
case of continuous medium.

5. Vavilov-Cherenkov radiation for electric, magnetic and toroidal di­
poles

Condition (4) for the opening of the cone for Vavilov-Cherenkov radiation has a 
kinematical or interferential character. The opening of the cone is therefore the 
same for all radiators—charges, dipoles, etc. (for anisotropic medium, see [22,23]). 
The intensity of radiation, its distribution and polarization along the cone depend 
on the character of the radiator.

Here we shall consider the Vavilov-Cherenkov radiation for the case of different 
dipoles. Although this problem has been discussed already for a long time 
[16,21,24,25], unclear points arose from time to time, which only recently have 
become clarified [26,27],

Let us write the field equations by means of which one can calculate the



122 V.L. Ginzburg

Vavilov-Cherenkov radiation using the macroscopical method:

curl H =
1 deE 47t .
---- ä7" ’’------Ec dt c

curl E = 1 OgH 
c dt '

(16)

(17)

div cE = 477p, div pH = 0. (18)

We deal here with an everywhere non-moving medium whose properties are 
described by the permittivity e and the permeability p (e and p in eqs. (16)—(18) 
must be considered as operators, but for the problems considered one may at first 
put c = const, p = const, and in the final result substitute c(co) and g (co); see [8]). 
Besides, in the case of the Vavilov-Cherenkov effect the medium is assumed to be 
homogeneous.

If a source moves uniformly at velocity v and has a point charge e, an electric 
moment p and a magnetic moment m, then

g
j — ev8(r — v/) + — {pS(r — vt)} + c curl{ mô(r — vt)} (19)

Here, p and m are moments in the laboratory frame of reference (by definition it 
coincides with a non-moving medium). In the rest frame of the source the values p' 
and m' are different (see below). If there exists only a charge, the solution of eqs. 
(16) and (17) leads to eq. (6). We will not write here all the equations for the case of 
dipoles (see refs [25,26]), but we will give those which are connected with unclear 
points. For a magnetic dipole m ± perpendicular to v, we have

The dipole considered here is purely magnetic in the rest frame: in the laboratory 
frame it possesses also an electric dipole moment p ± = (l/c)[vm ±] (for clarity we 
should recall that in this case m' = m, p' = 0). For an electric dipole p± 
perpendicular to v (in this case m' — 0, m x = — (l/c)[r/>x]) we have

The magnetic dipole considered above [see eqs. (19) and (20)] is a usual “current” 
magnetic dipole. But in principle, there may exist also magnetic dipoles of other 
types (let us call them “ true” magnetic dipoles) which are formed by two magnetic 
monopoles + g and — g [the moment of such a dipole is m — gd, where d = r2 — r}, 
r2 and r1 being positions of the monopoles + g and g (see fig. 2); of course, for a 
point dipole ¿Z -> 0, gd = m].
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E

m = M0V
d)

Fig. 2. (a, b) Electric dipole p, (c) “true” magnetic dipole m and (d) “current” magnetic dipole nt. The 
current magnetic dipole is schematically shown here as a rod with magnetization Mo in a volume F; 

another possible model is a ring with a current.

To calculate the fields of magnetic monopoles *,  dipoles, etc. in a medium, we 
can in a certain approximation, which we just use here, assume j = 0, p = 0 in eqs. 
(16)—(18), but add to the right-hand side of eq. (17) the term — (47r/c)jm, where jm 
is the current density of the magnetic monopoles (besides, the second of eqs. (18) 
takes the form div pH = 47rpm, where pm is the magnetic charge density).

* For magnetic monopoles the electrodynamics of continuous media is, in general, more complicated 
than indicated here [39], but this is not especially important for us.

If the solution of the problem for an electric charge is known, the solution for a 
magnetic monopole is obtained from the duality principle (for more details see [26]). 
Thus, for the Vavilov-Cherenkov radiation of a magnetic monopole, where jm = 
gv8(r- vt) we obtain from eq. (6):

(22a)
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In the case of a “true” magnetic dipole m ± , which is a direct analogue of an 
electric dipole p ± , we similarly obtain from eq. (21):

/ dm
I dr (22b)

Expression (22b) differs from eq. (20) which refers to the “current” dipole nt ± . 
This result [25] seems paradoxical, because the fields of a current and a true 
magnetic dipole are quite similar, at least outside the dipoles. But in fact these fields 
are not quite equivalent. For instance the field of a resting true dipole m is as 
follows:

which is analogous to the field of an electric dipole

£= KP^r-^p H = 0.

At the same time the field of a current dipole is

H =
3(mr)r— r2nt + 47T/nÔ(r), E = 0.

(23)

(24)

(25)

The absence of the factor 1 /¡i in the first term of this expression as compared with 
eq. (23) is associated with different definitions of the moments nt and m [26], The 
term ^Trnt8(r) in eq. (25) reflects the difference between the dipoles, which is clear 
from fig. 2 (for a current dipole the field lines are closed; eq. (25) is the solution of 
eq. (16) with j = c curl(mô(r)}).

If monopoles move in a medium with rather thin empty channels and gaps, the 
Vavilov-Cherenkov radiation remains unchanged (see section 4). In the case of 
dipoles, however, an arbitrarily thin channel or a gap, generally speaking, changes 
the field and the energy radiated by the source.

The presence of thin channels and gaps does not affect dipoles parallel to the 
velocity V (and, thus, to the channel axis or to the gap plane). This can be seen by 
means of the reciprocity theorem [21],

An electric dipole p ± perpendicular to v radiates in a thin cylindrical channel 
[2t/(e + l)]2 times more than in a continuous medium; for a gap the amplification 
is characterized by a factor e2 (above we have put p = 1 and assumed that in the 
laboratory frame of reference the magnetic moment nt = 0; see [21] and [8, ch. 7]). 
This fact shows that a narrow surrounding is important for radiation by a dipole. 
Moreover, it was shown in [28] that a “current” dipole moment radiates like a 
“true” one, if the medium inside it is not at rest but is moving at the same velocity v 
as the dipole itself. I should confess, nonetheless, that I have not understood the
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Fig. 3. Toroid with current. T is the toroidal dipole moment.

situation quite well until recently. The consideration of the Vavilov-Cherenkov 
radiation for a toroidal dipole moment [26,27] has provided a good insight into this 
matter. An example of a toroidal dipole is a “toroid”, i.e. a toroid-like solenoid with 
current (fig. 3). If such a system is not charged (p = 0), it does not possess an 
electric dipole and higher multipole moments. Further, if an azimuthal current is 
absent (to this end the winding must be, for example, double—it must first go in 
one and then in the other direction), the system does not possess a magnetic 
moment either. But inside the toroid the field H #= 0 and the system has a toroidal 
dipole moment. Its general definition is as follows:

(26)

where j is the current density.
If a point toroidal dipole is at rest, the density of the toroidal moment ^== T8(r) 
and

j = c curl curl{ Tô(r)}. (27)

If a toroidal dipole is moving in a vacuum at constant velocity v, then, as follows 
from Lorentz transformations, outside the dipole the fields H and E are as before 
equal to zero. Inside the dipole the field H and the field E = — (l/c)[v//].

The fields of a toroidal dipole moving uniformly in a medium cannot, of course, 
be found by means of Lorentz transformations. The calculation on the basis of eqs. 
(16) and (17) with the current eq. (27) shows that outside such a toroidal dipole 
fields are present [27], and if condition (5) holds, the Vavilov-Cherenkov radiation 
appears with a power

w5 du. (28)
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The dipole T is here assumed to be directed along the velocity v and, what is 
essential, in the rest frame there exists only a toroidal dipole [i.e. the current density 
in the rest frame is given by eq. (27)]. If in the laboratory frame of reference

j = c curl curl{ Tr8(r — vt)},

then in the rest frame there also exists a quadrupole electric moment, and we obtain 
for (dW/dt)T an expression [26,27] which differs from eq. (28) by the replacement 
of(€/i-l)2by(cju.)2 and, of course, by the replacement of T by 7¡,. By virtue of 
what has been said one should expect that if a toroidal dipole moves in an empty 
channel, the Vavilov-Cherenkov radiation completely vanishes. The calculation, 
naturally, confirms this conclusion [20,30], For an empty channel or a gap the 
calculation is, however, not needed—the result is obvious because the field in 
vacuum, outside a toroidal dipole is equal to zero. But the calculation is necessary if 
the channel is filled with a medium with permittivity e0 and permeability ju.o. Then 
for a thin channel we obtain expression (28) with the replacement of (c/x — l)2 by 
(eoMo — I)2, which vanishes as eop.o -> 1 and, of course, as e0 -> 1, and ¡jl0 -> 1.

What does all this mean? The whole point is that in the case considered the 
medium fills up the toroidal dipole inside which there is a field. This field affects, 
that is, polarizes the medium, and this effect lasts also after the dipole has passed. 
In other words, the dipole leaves a “trace”. This picture is especially good for a 
plasma. Particles (electrons, ions) passing through a dipole are deflected inside it by 
the field, and therefore the plasma behind the dipole is perturbed. For a toroidal 
dipole this effect manifests itself, so to say, in a pure form. This also occurs with 
magnetic moments, and, due to different fields inside a “current” dipole and a 
“ true” dipole [see eqs. (23, (25)] the corresponding “ traces” in the medium are also 
different. According to this conclusion, a “current” dipole and a “true” magnetic 
dipole moving in an empty channel or in a gap must radiate similarly [21],

How will different dipoles radiate when they move in a continuous medium? 
Since the radiation of dipoles is already influenced by the motion in thin channels, 
and while the fields inside the dipoles are essential, it is clear that not only “far” 
collisions, but also “near” collisions are responsible for the radiation. If the dipoles 
are macroscopic, then the passage of a medium (for example, plasma) through the 
dipoles may play some role. But for microscopic (point) dipoles the role of “near” 
collisions may be considered only in the framework of the microtheory or with an 
account of spatial dispersion. This also concerns the problems dealing with particle 
radiation in the channelling process. If we omit channelling of charged particles, the 
corresponding problems are of no real importance (at least at the present time) 
simply because of the smallness of the dipole moments of different particles 
(neutrons, etc.) Radiation by toroidal dipoles moving in a medium may apparently 
be only of methodical interest. In solid-state theory crystals with a toroidal moment 
of nonzero density are, however, specific magnetic substances [32],

6. The classical and quantum theories of the Doppler effect in a medium 
The quantum theory of the Vavilov-Cherenkov effect in the classical limit (14) does 
not give anything new, apart from an understanding of the role played by the 
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conservation laws. It is therefore interesting that in more complicated cases quan­
tum theory enables us to reveal interesting points even in the classical limit. To 
illustrate this, we consider the Doppler effect in a medium.

First, we recall the classical situation using as an example an oscillator with 
frequency (this is a frequency in a frame of reference in which the oscillator as a 
whole is at rest). If the oscillator moves in vacuo with a constant velocity v (in the 
laboratory frame of reference), then in this frame of reference the frequency of the 
waves emitted by it equals

«(«)-
<W1 -f2/c2

1 — ( v/c) cos 6
______ ¿¿o
1 — (f/c) cos 6 '

(29)

where 6 is the angle between the wavevector (in the direction of observation) and v, 
and w0 is the oscillator frequency in the laboratory frame.

Now let there be a transparent medium [with a refractive index «(<*>)],  which is at 
rest in the laboratory frame of reference. We should not be disturbed by the fact 
that the motion of the source in a medium may lead to large energy losses and, 
which is important, to the destruction of the source itself (say, of an excited atom). 
Indeed, as pointed out in section 4, to eliminate losses and destructive collisions, 
one can make an empty gap or an empty channel in the medium or direct a beam of 
atoms near the boundary between the medium and the vacuum.

If a medium is present, eq. (29) is replaced by

^oo^-v2/c2
w ( 0 = --------------------------------

1------ h(w) cos 6c

%

1---- n ( w ) cos 0c

(30)

One can obtain eq. (30) from eq. (29) by using the general rule consisting in the 
replacement of v/c by vn/c (in the expression ]¡1 — v2/c2 one should not, of 
course, make this substitution, as it does not concern the emission process). 
However, one can obtain eq. (30) also by solving the problem of an oscillator 
moving in a medium. It is nontrivial that absolute values occur in eq. (30). If the 
motion is subluminal (v<c/n) or if in the case of a superluminal motion the 
emission proceeds outside the cone [eq. (4)], i.e.

(31)

we are dealing with the usual, normal Doppler effect. The so-called complex 
Doppler effect due to dispersion (i.e. due to the dependence of n on w) is also 
possible in this case (the complex Doppler effect as well as eq. (30) with the 
modulus were first considered by Frank in 1942 [24]).

If the motion is superluminal, then under the condition

— n ( a) ) cos 9 > 1 (32)

[i.e. when there is emission into the cone (eq. 4) which is often referred to as the
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Fig. 4. Regions of normal and anomalous Doppler effect.

“Cherenkov cone”; see fig. 4] eq. (30) without the modulus would give negative 
values of the frequency co. From this it is clear that it is necessary to introduce the 
absolute signs.

Under condition (32) the Doppler effect is called anomalous. If dispersion is 
taken into account, the whole picture is rather complicated. Since here we are 
interested in another aspect of the question, we shall neglect dispersion. In this case 
it follows from eq. (30) with n(<o) = n = const, that, on the Cherenkov cone itself 
[for (vn/c) cos B = (vn/c) cos 0O = 1; see eq. (4)] the frequency w(0o) — oo and 
co($) —» oo as 6 —> 0Q on both sides of the cone. It is impossible to say anything more 
on the basis of eq. (30), and the difference between the normal and the anomalous 
Doppler effects does not seem to be a profound one.

We now turn to a quantum derivation of the formula for the Doppler effect in a 
medium [33]. To do this, one should use the conservation laws (9) and (11), but 
replacing the particle energies £01 for a charge (or, more generally, for a source 
without internal degrees of freedom) by the expression Eo j =

+ m01)2c4 + c^o2! , where (m + m0)c2 = me2 + Wo is the total energy of the 
system (atom) in the lower state, 0, and (m + mjc2 = me2 + is the total energy 
in the upper state, 1.

For simplicity we consider here a two-level system and refer to the state with a 
larger energy as the upper state [that is, W1 > Wo, and the frequency of the radiation 
by an atom at rest is = (W} — JU0)/A].

If we now apply the conservation laws in the classical limit (14) and the relation 
AE = E} — E0 = vAp, we arrive at eq. (30). A more general calculation, which takes 
into account recoil, is presented in ref. [33]. It is, however, not on account of the 
quantum corrections that this is of importance, but because of the fact that, tracing 
down the signs one can observe an important point which is, of course, completely 
hidden in the classical derivation of eq. (30): In the region of the normal Doppler 
effect [eq. (31)] the emission at frequency w corresponds to a transition of the atom 
from the upper state 1 to the lower state 0 (the direction of the transition is 
determined from the requirement that the energy A co of the emitted quantum should 
be positive, that is from the requirement co > 0). In the case of an anomalous 
Doppler effect [eq. (32)], i.e. if a quantum of energy Aw is emitted into the 
Cherenkov cone, the atom must transit from below (state 0) upwards (to state 1)
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Atomic levels

Fig. 5. Transitions between levels 0 and 1 in the case of a normal and an anomalous Doppler effect.

(For some more details see also fig. 5 and refs. [33,34].) There is no contradiction 
here—the energy that goes to the excitation of the radiating system (the atom), as 
well as the radiation energy hv itself, is derived from the kinetic energy of 
translational motion.

Therefore, in the case of superluminal motion v>c/n, where the anomalous 
Doppler effect is possible, the radiating atom, even if initially not excited will get 
excited with the simultaneous emission of quanta inside the Cherenkov cone. 
Making a transition to a lower state, the excited atom emits quanta at angles 6 > 0O, 
i.e. outside the Cherenkov cone. In this connection see also [40],

I think it would have been rather difficult to establish this unusual picture 
without quantum calculation. We can confirm the result and develop the theory 
further using the classical calculations of the radiative friction force acting upon a 
superluminal oscillator. In accordance with the above conclusion, the waves emitted 
outside the Cherenkov cone lead to a damping of the oscillator vibrations, whereas 
the waves emitted inside the cone (the anomalous Doppler effect) pump up the 
oscillator vibrations (see ref. [8, ch. 7] and the literature cited therein).

7. Transition radiation at the boundary between two media

If the medium is inhomogeneous and (or) changes in time or if such a medium lies 
near the trajectory of a source, transition radiation occurs. This radiation originates 
when a charge (or another source with zero eigenfrequency) moves uniformly and 
rectilinearly under non-uniform conditions—in an inhomogeneous or a time-depen­
dent medium (or near such media). Transition radiation in general may coexist and 
interfere with the Cherenkov radiation and with the radiation due to charge 
acceleration (i.e. with bremsstrahlung, synchrotron radiation, etc.). But for a deeper 
insight into the physics of the case, we consider the transition radiation alone.

Let a charge move at a constant velocity

c 
u < -, n (33)
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such that Vavilov-Cherenkov radiation does not occur. If, besides, we are dealing 
with a vacuum (n = 1), there is no radiation at all. For the radiation to appear in a 
vacuum, a charge (or a multipole) must be accelerated or, in other words, the 
parameter v/c, which characterizes the radiation, must change. If the medium is 
transparent, this parameter has the form f/c h = un(œ)/c. This is equal to the ratio 
of the particle velocity v to the phase velocity of light, cph = c/h(w).

The radiation occurring when the parameter vn/c changes due to changes in n 
along or close to the trajectory of a source with v= const is called transition 
radiation. To be precise, in the general case of an absorbing medium the role of the 
refractive index n is played by = n + ix, where c is the complex dielectric 
permittivity of the medium (for simplicity we assume here, and below, that the 
medium is nonmagnetic, i.e. /1 = 1).

The simplest problem of this kind is a charge crossing the boundary between two 
media considered by I.M. Frank and the present author in 1944 [35], Transition 
radiation is an even simpler effect than Vavilov-Cherenkov radiation. The reason 
for the possibility of transition radiation to be revealed so late is the same as in the 
case of the Vavilov-Cherenkov effect.

It is useful to recall the most obvious explanation of the reason for the 
occurrence of transition radiation when a charge crosses the boundary between 
media. It is well known that the electromagnetic field in the first medium (in the 
medium in which the charge moves at a given moment of time) can be represented 
as the field of the charge itself and the field of its “mirror image” moving in the 
second medium towards the charge. When the charge and its image cross the 
boundary, they partially “annihilate” as it were “from the point of view” of the first 
medium, and “reconstruct themselves”; and this leads to the radiation. Especially 
simple is the case of a charge impinging normally on an ideal mirror. When crossing 
the boundary of the mirror, the charge and its image — e “annihilate” each other 
completely or, rather, stop at the boundary (in the sense that the radiation occurring 
in a vacuum is the same as the radiation by an incident charge e and its image — e 
which simultaneously stop at the boundary; c.f. fig. 6).

To find the emitted energy W in this simplest case, we need not solve the rather 
cumbersome boundary problem, but we can use a simple formula for radiation by 
charges which suddenly change their velocity:

iv(w, e, <?) =
/ [^2*1

\ 1 - («,2Ä )Ä

[t^i n2
1

(34)
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Fig. 6. Transition radiation of a charge e crossing the boundary between vacuum and a metal.
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Here <?, is the charge of the i th particle, whose velocity changes sharply from n(1 to 
v,2, and s = k/k is the direction of the radiation wavevector characterized by the 
angles 3 and <p; the total frequency-dependent energy density of the radiation is 
W(cú) = JW(u, 3, <p) sin # d3 d<p, and the total energy W = JW(co) dw.

If in a vacuum (in the absence of boundaries, etc.) one charge e¡ = e stops 
abruptly or accelerates rapidly from the rest state to velocity v, then [see eq. (34)],

e2v2 sin2# ^(co, 3, <p) =
4772C3[1 — (f/c) COS #]2

(35)

In the case of transition radiation on an ideal mirror, one assumes in eq. (34) that 
the charge e}=e with velocity v and the charge e2 = — e with velocity —v stop 
abruptly at the boundary (see fig. 6). As a result, one observes radiation in medium 
1 (in vacuo) with energy

eV sin2#
#) =

2 ’

1 + ("A)2. 1 + »A _. 
2u/c 1-p/c (36)

77C

Here # is the angle between k and — v, as shown in fig. 6. In the nonrelativistic case 
(i.e. for v c)

(37)
3%c3

In the ultrarelativistic case (c —> c)

me2E — ---- >> me , (38)
1/1 - v2/c2

which coincides with the radiation of a single particle in the same limit [see eq. (35)]. 
The latter is clear since, when —> c, the radiation is directed along the charge 
velocity, and therefore the radiation of the charge e “going into metal” is not 
observed (in the medium 1—in vacuo—one observes only the radiation of the 
mirror image, of the charge — e, with a velocity — r). In the nonrelativistic limit the 
energy (37) is four times larger than the energy (35) for a single charge radiating into 
the backward hemisphere (into the vacuum), because for a nonrelativistic velocity 
the fields of the charge e and of its mirror image — e add up, i.e. they are doubled.
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The transition radiation discussed here occurs if a boundary between two media 
with different “electrical” parameters (e.g. dielectric permittivity, refractive index) is 
crossed. However, initially attention was concentrated on the incidence of a charge 
on a metal (which may not be a perfect mirror) and, hence, on transition radiation 
— mainly optical—in the backward direction, which is observed in vacuum. For 
relativistic particles of sufficiently high energy it is, however, quite realistic that a 
particle may well pass through a medium and go into a vacuum. This problem is 
equivalent to the previous one, and the corresponding formula for the radiation 
intensity is simply derived by a replacement of the velocity v by — v (see below). At 
the same time, in the calculation of fields there is no symmetry in these cases and 
the radiation intensities are different when we replace v by — p, and under certain 
conditions the differences are large. For forward radiation and, in particular, when a 
particle leaves the medium and enters the vacuum, the radiation spectrum has 
higher frequencies. In a condensed medium the transition radiation of relativistic 
particles can stretch out into the X-ray part of the spectrum. It is not expedient to 
give here the solution of the corresponding boundary problems (see refs. [10-12] 
and the literature cited therein).

The final formula for the case where medium 1 is a vacuum and medium 2 is 
described by the complex permittivity € [35], is given by

#)

e2v2 sin2# cos2#|(f — 1)[1 — u2/c2 + (v/c)^e — sin2# |

7t2c3| [1 — (t>2/c2) cos2#] [1 + (v/c)y/c. — sin2# ] (c cos # + yje — sin2# ) |

(39)

For an ideal mirror one can assume that | e | —> oo and eq. (39) goes over into eq. 
(36), as should be the case. The expression for fF2(w, #), referring to the case where 
the charge e leaves a medium of permittivity e (medium 1) for a vacuum (medium 2) 
with velocity v, is derived from eq. (39) by a replacement of v by — v; besides, the 
angle # is now the angle between k and v [but not beteen k and — ©, as in eq. (39)]. 
The replacement of v by — v in eq. (39) is not at all innocent—in the denominator 
there appears a factor [1 — (v/c)yjf. — sin2# ], instead of [1 + (r/cj^c — sin2# ]. This 
is just the reason why there appear higher frequencies in the radiation spectrum 
when a particle leaves the medium (we must take into account that c approaches 
unity for high frequencies). As a result the total intensity (integrated over all angles 
and frequencies) also increases; in the simplest case it turns out to be proportional 
to

E _ 1
™c2 /1 - v2/c2

(see section 10 below; E is the total energy of a radiating charge of mass m). This 
important fact was clarified in 1959 by Barsukov and Garibyan [36], This opened up 
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much wider perspectives for the creation of efficient “transition counters” intended 
for determination of relativistic particle energies.

The appearance of a possibility for a practical application to high-energy physics, 
stimulated interest to transition radiation. Altogether, transition radiation, this 
rather simple and clear effect in the field of classical electrodynamics, had hardly 
attracted any attention for about 15 years; now it is very popular, although mainly 
in the context of developing and applying transition counters. The latter problem 
has been mentioned even in a number of review articles, apart from a large number 
of papers (for references see [12,38]).

8. Transition radiation as a more general phenomenon; formation zone 

Transition radiation in the broad sense is also of value from a general physical point 
of view. It develops certain ideas and a “language”, and thereby facilitates further 
developments. The situation here is similar to the one with the Vavilov-Cherenkov 
effect used in Cherenkov counters.

Our attention has so far been concentrated on the transition radiation which 
occurs when one or several boundaries between media are crossed. In the latter case 
we deal either with an ordered sequence of boundaries, i.e. a system with a definite 
period, or with randomly distributed boundaries (inhomogeneities). Another trend 
which has developed is based on the fact that any radiation is formed not in a point, 
but in some region (the formation zone) whose dimension is determined by the 
wavelength Ä, but its dimension can also be appreciably larger. This is the reason 
why the Vavilov-Cherenkov effect occurs when a particle moves in a vacuum but 
near a medium (in a channel, a gap or near a boundary between media). Quite 
similarly, transition radiation (which in this case is called diffraction radiation) 
occurs when a source (charge) moving uniformly in a vacuum (or in a uniform 
medium) passes close to some obstacles—metallic or dielectric globules, dia­
phragms, a diffraction grating, etc. Apart from the above general remark, the 
occurrence of this transition radiation can also be explained on the basis of the 
method of images.

For relativistic particles, when we consider radiation in the direction of their 
velocity, the formation zone generally increases with an increasing particle energy. 
For instance, in vacuo the size of the formation zone Lf in the direction of the 
velocity for a given radiation wavelength À increases proportionally to

where E is the total charge (source) energy and it is assumed that E » me2.
The concept of the radiation formation zone and its size Lf, and the concept of 

the radiation formation time t{ = Lf/v, are of great importance not only in elec­
trodynamics, but also in high-energy physics (see [11,24] and [37, section 93]). 
The derivation of the expressions for L{ and rf for a source moving at velocity v in 
a transparent medium with a refractive index w(w) and emitting waves at an angle 3
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to V (fig. 7) seems worth considering here. Let at the moment t — 0 the source be at 
a point A and the phase of the wave emitted by it in direction k be equal to <pA. We 
define the formation time rf as the time after which the phase of the wave <pB 
emitted at a point B in the same direction k differs from the phase of the wave <pA 
emitted at point A by 277. The phase factor of the wave has the form exp i<p = 
exp i(Ar — cot). As is clear from fig. 7,

I <Pa — Q5b I = I cos # — I = —vtf cos # — , (40)

since the size of the formation zone is the path Lf = vtf. It follows from eq. (40) that

Lf = vtf =
277U

co| 1 — (u/c) n( co) cos 0
(t> n(co)/c)Ä

1 - (Vc) n (co) cos 6
(41)

The meaning of the formation time is especially obvious when we deal with 
forward radiation in a vacuum: in this case, within the formation time rf the 
radiation is ahead of the particle by a wavelength Ä [indeed, in a vacuum for 6 = 0, 
according to eq. (41),

À z . lire
and ;

when we pass over to a medium, we should replace c by cph = c/n (since we deal 
with phase relations) and from

we obtain expression (41) for 6 = 0]. In a vacuum, for 6 = 0, the formation length

_ Ä • v/c 
f 1 — v/c ’
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and for i? —► c, as has already been mentioned,

Lf=2xi—j , E»mc2. (42)
\ me /

For sufficiently high energies the dimension of the formation zone Lf and time zf 
can increase and finally exceed greatly the wavelength Ä and time X/v. For 
instance, the intensity of transition radiation from two boundaries, say, boundaries 
of a plate of thickness d may be considered (the interference terms being neglected) 
as a sum of the radiation intensities from one boundary only, provided that Lf d. 
If Lf > d and especially if _Lf d, the radiation from a plate differs markedly from 
the radiation from two independent boundaries.

What has been said determines to a large extent the specificity of transition 
radiation by a pile of plates or, in general, by a regularly inhomogeneous medium 
(for details concerning this radiation, which was called the resonance transition 
radiation or transition scattering, see refs. [11,12]).

Another type of transition radiation occurs in a homogeneous but time-depen­
dent medium. The essence of the matter is explained most easily in terms of the 
parameter vn/c. In order that a transition radiation can occur (for r = const.), the 
refractive index must change on the charge trajectory or near to it. But this change 
will also take place if the index n changes in time. This kind of transition radiation 
can occur even for a charge which is at rest relative to the medium. Indeed, if by 
applying a magnetic or an electric field, or by some other means, one changes the 
medium rather sharply from an optically isotropic state to an anisotropic state, the 
polarization of the medium surrounding the fixed charge changes, thereby losing its 
spherical symmetry. This change in the polarization entails the emission of electro­
magnetic waves.

Like the Vavilov-Cherenkov radiation, the transition radiation is also of a very 
general character in the sense that it takes place for various kinds of waves. As an 
example we mention transition radiation of acoustic waves, arising when a moving 
dislocation crosses a grain boundary in a polycrystalline body. Other problems 
connected with transition radiation are also of interest in acoustics (see also section 
11, below).

Interesting and may be of importance in applications to pulsar magnetospheres is 
transition radiation in the presence of a strong magnetic field leading to nonlinear 
electrodynamic effects.

9. Transition scattering; transition bremsstrahlung

If transition radiation occurs when a charge moves in a medium with a periodically 
(say, sinusoidally) changing refractive index, it may be called not only transition 
radiation or resonance transition radiation, but also transition scattering. A dielec­
tric permittivity (refractive index) wave, which can be a standing or a travelling 
wave, is in this case scattered by a moving charge generating electromagnetic 
(transition) radiation. But the term transition scattering used in this case instead of 
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transition radiation would be irrelevant, if the effect did not take place also in the 
limiting case of a charge at rest.

We consider an isotropic medium characterized by a dielectric permittivity c 
which depends on the density p of the medium only. If a longitudinal acoustic wave 
propagates in this medium, the density is p = p(0) + p(1) sin(Æor — woi) and, by 
virtue of what has been said above,

€ = c(0)4-€(1) sin(fcor — woi), (43)

where c(1) is the change in e caused by the change in p (in the simplest case 
t(1) = const. p(1)). We have chosen a definite mechanism for the change in e (in this 
case due to a change in the density p) to make our consideration concrete.

We now place in a medium a fixed (or, say, an infinitely heavy) charge e. Around 
this charge there appears an induction and a field

D(r, I) = <£(<•.'). O'0'
r

(44)

where the superscript (0) implies an “ unperturbed” problem (the field of a charge 
without a permittivity wave). In the presence of a permittivity wave a varying 
polarization

(45)

arises around the charge, in a first approximation (corresponding to the assumption 
|£(1)| <<e(0)). This polarization which possesses no spherical symmetry for k0 =# 0, 
results in the appearance of an electromagnetic wave with a frequency œ0, emanat­
ing from the charge (see fig. 8). The wave number of this wave is

c

If, as we assumed, the permittivity wave is caused by the acoustic wave, k kQ = 
(¿q/U, where U is the sound velocity (we assume here that U c/ ).

The electromagnetic wave may be regarded as being scattered in the same sense 
as for other kinds of scattering, such as, for instance, the scattering of an electro­
magnetic wave by an electron at rest (in this case, we mean a rest state, only when 
the effect of an incident wave is disregarded). Transition scattering plays a promi­
nent role in plasma physics (see section 10, below) and is on the whole a rather 
general phenomenon which occurs in a vacuum when an electromagnetic or a 
gravitational wave is incident on the region with a strong constant (static) or 
quasi-stationary electromagnetic field.

Closely related to the transition scattering process is transition bremsstrahlung. It 
occurs in a medium if a uniformly and rectilinearly moving charge e passes close to 
another charge e at rest. Transition bremsstrahlung is similar in its characteristics to
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Fig. 8. Schematic picture characterizing the process of transition radiation formation on a non-moving 
(fixed) charge.

ordinary bremsstrahlung, although for its occurrence an acceleration (a change in 
the rectilinear trajectory or deceleration) is not necessary. The term “transition 
bremsstrahlung” is justified also because this radiation occurs in particle collisions. 
Moreover, transition bremsstrahlung of electrons is described by expressions which 
are very close to the corresponding formulae for ordinary bremsstrahlung. Further, 
transition bremsstrahlung interferes with ordinary bremsstrahlung. However, in 
contrast to ordinary bremsstrahlung, transition bremsstrahlung does not disappear 
in the limit of infinitely heavy colliding particles. The general theory of bremsstrah­
lung of particles in a medium should take into account also transition bremsstrah­
lung and its interference with ordinary bremsstrahlung (in the same way as the 
general theory of scattering must take into account transition scattering).

It is easy to understand the physical nature of transition bremsstrahlung if we 
bear in mind that the field E and the polarization P = (e — l)£’/477 of a uniformly 
moving and, in particular, a resting charge can be expanded into waves with a wave 
vector k0 and a frequency = (kov), where v is the charge velocity. These waves 
are connected to permittivity waves with the same values k0 and w0. Such permittiv­
ity waves “dragged along” by a single charge may undergo transition scattering by 
another charge, as a result of which electromagnetic radiation, in this case transition 
bremsstrahlung, may be produced.

Transition bremsstrahlung may generate any “normal waves” (excitons, photons, 
phonons, and so on) which can propagate in the medium considered and is therefore 
a phenomenon of rather general character.

10. Transition radiation, transition scattering and transition brems­
strahlung in a plasma

Transition radiation, transition scattering and transition bremsstrahlung play a 
particularly important role for plasmas. In plasma physics one can go far by using a 
microscopical approach and avoid introducing the concept of transition scattering, 
but it may provide an insight into the situation and facilitate the development in 
this field [12].



138 V.L. Ginzburg

In a rarified (in the collisionless limit) plasma the processes of transition 
scattering and transition bremsstrahlung may turn out to be particularly important. 
The above mentioned transition processes occur without any particle acceleration 
due to inhomogeneity of the medium along the trajectory of rectilinearly and 
uniformly moving charges. Collisions being neglected, the particle motion in a 
plasma is, in a first approximation, rectilinear and uniform if the action of 
macroscopic magnetic and electric fields are excluded. Various instabilities may 
appear in a collisionless plasma leading to a background of different kinds of waves. 
These waves are permittivity waves undergoing transition scattering. These permit­
tivity waves are coupled with the most typical and most often observed high- 
frequency (Langmuir) wave in an isotropic plasma. Let us consider this example in 
more detail.

For a collisionless isotropic plasma the longitudinal dielectric permittivity has the 
form (see, for instance, [8, ch. 11]; the role of ions is assumed to be negligible small)

w2 k7w2Æ2
q(«>, Æ) = l——y—3-------- V-’

to mco

477C2^4/'

m
to2 » (46)

where k is Boltzmanns constant, T the temperature and the electron density. 
The dispersion equation for longitudinal waves c^(w, Zc) = 0 then leads to the 
following form for a longitudinal (plasma) wave

E = Eq cos(k0r - woz), [£0A] = 0, Eok = Eok,

to2 « w2 + (47)

Further,

div E = — Eoko sin(Æor — woi) = — 47Te^K’(1), +^T(1)

(the electron charge is — e), from which it is clear that the longitudinal wave is 
coupled to the permittivity wave (the charge — is compensated by the ion 
charge)

sin(Æor-Wor),

e<1)=_4^” = (48)
m Wq m cOq

Thus, plasma particles in a plasma wave are affected by the electric field E of the 
wave and at the same time a permittivity wave falls on them. The oscillations of the
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electrons in the field lead to Thomson scattering with the well-known cross-section

[we are dealing with a total cross-section for non-polarized transverse radiation; it is 
assumed that the electron velocity Simultaneously occurring transition
scattering interferes with Thomson scattering. For electrons, both effects are of the 
same order of magnitude. In this respect a plasma is a complicated object since one 
should take into account both spatial and frequency dispersion. The corresponding 
formulae are presented in ref. [12]. In the case of ions the role of Thomson 
scattering is small due to the large ion mass, whereas transition scattering prevails 
and is of the same order of magnitude as for electrons. The same can be said about 
transition bremsstrahlung—it is as important for ions as it is for electrons, whereas 
ordinary bremsstrahlung is significant only for electrons.

At boundaries between media, transition radiation in a plasma is usually not so 
interesting because plasma boundaries are smeared out. This remark is, however, 
rather conditional since all depends on the wavelength of waves we are dealing with. 
For sufficient long waves, even if there are no walls (to say nothing of the 
conditions where such walls do exist) the plasma boundary may turn out to be sharp 
enough for the appearance of a noticeable transition effect.

For sufficiently large frequencies to2 » w2 (where ws is the eigenfrequency of the 
medium) all media obey in a good approximation, the plasma formula

(49)

where is the total electron concentration in the medium.
In the forward radiation of a relativistic particle leaving a plate, the energy is 

concentrated mainly in the X-ray range and, therefore, one can use eq. (49) to 
calculate the total energy W2 for any medium. The result mentioned in section 6 is 
(see ref. [12])

(50)

the maximum of radiation corresponding to the frequency

(51)
me

According to eq. (42) with Ä ~ Àm, the dimension of the formation zone is in this 
case,

277C 277C Í me2 \
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equal to

4 wc
(52)cm,

where we have taken into account that for an ordinary medium w t ~ 1016—1017 
sec-1 and Àp t = 2wc/w t ~ 10~5-10-6 cm. For high energy particles, for example, 
for protons with E ~ 10'5 eV, E/mc2 ~ 106 and Lf ~ 10 cm showing, how large the 
formation zone may be in some cases.

For the boundary between plasma and vacuum [i.e. in case eqs. (49) and (39) are 
used for E me2] the total energy of backward radiation (in vacuum) is equal to

(53)

and in the region of plasma transparency (i.e. for frequencies w > wp t) the energy is

r00 2 e2 E
w1^)d<0=--Wpaln —.

me2

The causes of this increase of the energy which is slower than according to eq. 
(50), have already been analyzed in section 7 (see also [12]).

Even in the case of eq. (50) where one boundary is crossed, the probability of the 
appearance of a single transition quantum, is only on the order of ~ e2/hc
~ Ï37, according to eq. (51). That is why transition counters must have many 
dividing boundaries. The number of boundaries is in turn limited by the necessity to 
have layers (plates) with a thickness comparable with or exceeding the dimension of 
the formation zone Lf. Nonetheless, transition counters have their advantages and 
are being applied [38]. Transition counters, as well as other possible devices 
exploiting transition radiation and scattering of various types, may find application 
in experimental physics.

11. Concluding remarks

Motion of sources at a constant velocity is important for electrodynamics in 
continuous media and, in particular, in plasmas. New problems of this sort may 
arise and attract attention.

To illustrate concretely the fruitfulness of understanding the physics of transition 
processes, I would like to give an actual example. In 1973 a paper appeared which, 
within the framework of the general theory of relativity, considered a charge in the 
centre of mass of a binary (two identical, electrically neutral stars moving in a circle 
relative to their centre of mass). Such an absolutely non-moving charge emits 
electromagnetic waves. This result is, at first glance, unexpected. However, it 
becomes obvious if one knows what transition scattering is and if one bears in mind 
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that in the general theory of relativity a gravitational field affects the electromag­
netic properties of the vacuum: one can say that vacuum possesses an electric 
permittivity and a magnetic permeability which depend on the metric tensor glk. It 
is thus clear that moving stars modulate permittivity and permeability and, so to 
say, generate permittivity waves. As a result, transition scattering of these waves by 
a non-moving charge occurs, and there appears a “scattered” electromagnetic wave. 
The understanding of this fact enables us to treat such problems as the transforma­
tion (scattering) of a gravitational wave by a charge or, what is more realistic in 
astrophysics, by a magnetic dipole (a pulsar) [12].
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Discussion, session chairman S. Belyaev

Rubbia: You have shown us situations in which a particle can emit photons. There 
exist also the inverse processes, in which charged particles can absorb photons, like 
for example inverse Vavilov-Cherenkov radiation. This kind of phenomenon can 
also provide us with novel ways of accelerating particles using coherent radiation.

Ginzburg: You are correct. I simply forgot to mention this.


